emf

 UNIT I – INTRODUCTION


PART A


1. Define Scalar and Vector quantities. Give examples.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


2. A = ax + 2ay + 3az. Find the magnitude and direction.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


3. Cartesian P(1,2,3) to Cylindrical coordinates.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


4. A = 4ax + 2ay + az in Cylindrical coordinate system.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


5. A = 3x ax + 5z az + y ay. Find Curl(A).  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


6. B = 4xy² + 2y³ ay + xyz az. Find Divergence(B).  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


7. Two conditions of Null identities.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


8. Physical significance of Curl.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


9. State Stoke’s theorem.  

   Video: [#]  

   PDF: [#]  

   PDF 2: [#]


10. State Divergence theorem.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


PART B & C


11. Differentiate coordinate systems.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


12. Distance between A(X=2,Y=3,Z=-1), B(r=4,-50°,2) to region and each other.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


13. State and Prove Divergence theorem.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


14. D = 5r²/4 ar. Evaluate Divergence theorem for r = 4m, φ = π/4.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


15. Prove Stoke’s and Helmholtz theorems.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]



                UNIT II – ELECTROSTATICS.                


PART A


16. State Coulomb’s law.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


17. Define permittivity.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


18. Define electric field intensity.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


19. Define Electric flux density.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


20. State Gauss’s law.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


21. Define Electric dipole, Dipole moment, Polarization.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


22. 10µC at (1,2,3), -3µC at (3,0,2). Find force.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


23. F = 2ax + ay + az N on 10C. Find E and its magnitude/direction.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


24. 10pC at rest. Find potential at 10 cm.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


25. Q = 10nC. Find E at P(1,0,1), and electric field density.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


26. Differentiate Dielectrics and Conductors.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


27. Define relaxation time and capacitance.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


PART B & C


28. Coulomb’s law, E-field due to charge distribution.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


29. Find E at P(3,-4,2) due to Q1 & Q2.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


30. 3 charges: 50nC at (0,0), 40nC at (3,0), -60nC at (0,4). E at (3,4).  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


31. State and prove Gauss’s law and applications.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


32. State and prove electrostatic boundary conditions.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


33. Derive Laplace’s and Poisson’s equations.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


34. Derive equation of continuity.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


35. Explain capacitance and energy stored.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


36. Parallel plate capacitor problem – Capacitance, Charge, Energy.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


37. Explain current density and its types.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


            UNIT III – MAGNETOSTATICS.               


PART A


38. Define permeability.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


39. Define magnetic field intensity.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


40. Define magnetic flux density.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


41. State Biot-Savart law.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


42. State Ampere’s Circuital law.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


43. Applications of Biot-Savart & Ampere’s laws.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


44. Lorentz force equation.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


45. Classify magnetic materials.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


46. Toroid – Find inductance.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


47. Coaxial cable – L of 10m long cable.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


48. Force on current element, Force between elements, Torque.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


PART B & C


49. Explain Biot-Savart law and its applications.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


50. State, prove Ampere’s law and applications.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


51. Find H due to Idl = 3π(ax+2ay+3az) µA at (3,4,5).  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


52. Derive magnetostatic boundary conditions.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


53. Find H at center of square loop, side = 2m, I = 1A.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


54. Q = -1.2C, V = (5ax+2ay+3az), E and B given – Find Force.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


55. Interface at x=0. µr1 = 2, µr2 = 5, H1 given – Find B2, B1, H2.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


56. χ = 3, B = 10y ax mWb/m². Find µr, µ, Jb, J, M, H.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]

         UNIT IV – TIME VARYING FIELDS.            


PART A


57. Faraday’s Law  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


58. Lenz’s Law  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


59. Displacement current  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


60. Conduction current  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


61. Boundary conditions at time varying fields  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


62. Integral form of Maxwell’s equations  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


63. Differential form of Maxwell’s equations  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


64. Give Maxwell’s equations in point and integral form  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


PART B & C


65. Derive Maxwell’s equations from fundamental laws  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


66. Derive Maxwell’s equations in integral and point forms  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


67. Boundary condition for E and H between media  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


68. Interface at x = 0, ε1 = 2, ε2 = 5. E1 = 3ax + 4ay – 6az.  

    Find D1, D2, E2  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


69. Interface at y = 0, μr1 = 2, μr2 = 5. H1 = 5ax + 3ay + 6az.  

    Find B1, B2, H2  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


        UNIT V - ELECTROMAGNETIC WAVES.     

PART A


70. Define wave and uniform plane wave  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


71. Derive wave equation  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


72. Define wave impedance  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


73. Define polarization and types  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


74. Define reflection coefficient  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


75. Define transmission coefficient  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


76. Define intrinsic impedance  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


77. Define propagation constant  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


78. Skin depth  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


79. Attenuation and phase constant  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


80. Reflection of plane waves  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


PART B & C




1. Use Maxwell’s equations to obtain the wave equation for a conducting medium.

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


2. State Poynting theorem. Derive electromagnetic power flow and Poynting vector

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


3. A uniform plane wave in a medium having σ = 10-3 s/m. ε = 80 ε0 and µ = µ0 is having a frequency at 10 kHz. (a) Verify whether the medium is good conductor (b) Calculate the following Attenuation constant, Phase constant, Propagation constant, Intrinsic impedance, Wavelength, Velocity of propagation.

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


4. A plane wave travelling in a medium of Ɛr = 1, µr = 1 has an electric field intensity of 100 x √ π V/m. Determine the energy density in the magnetic field and also the total energy density.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


5. Find the depth of penetration d of an EM wave in copper of f = 60 Hz and f = 100 MHz. For copper sigma = 5.8 x 107 mho/m Ɛr = 1, µr = 1.  

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


6. Earth has a conductivity of sigma = 10-2 mho/m, Ɛr = 10, µr = 2. What are the conducting characteristics of the earth a) f = 50 Hz b) f = 1 KHz c) 1 MHz d) 100 MHz e) 10 GHz.

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


7. Using Maxwell's equations, derive the expression for an electromagnetic plane wave in a lossless medium. 

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


8. Deduce the Oblique incidence of a plane wave on a boundary planes.

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]


9. Derive the expression for normal incidence at a plane conducting boundary and normal incidence at a plane dielectric boundary conditions.

    Video: [#]  

    PDF: [#]  

    PDF 2: [#]






























































Download Notes

Comments

Popular posts from this blog

ECE 3RD SEMESTER NOTES

networks and security cia 1