- Get link
- X
- Other Apps
Posts
two ray channel
- Get link
- X
- Other Apps
% TWO RAY CHANNEL lambda = 0.3; ht100 = 100; ht30 = 30; ht2 = 2; hr = 2; axis = []; p100 = []; p30 = []; p2 = []; pfsl = []; for i = 1000:5000 d = 10^(i/1000); axis = [axis d]; fspower = (lambda/(4*3.1415*d))^2; power100 = fspower * 4 * (sin(2*3.1415*hr*ht100/(lambda*d)))^2; power30 = fspower * 4 * (sin(2*3.1415*hr*ht30/(lambda*d)))^2; power2 = fspower * 4 * (sin(2*3.1415*hr*ht2/(lambda*d)))^2; p100 = [p100, 10*log10(power100)]; p30 = [p30, 10*log10(power30)]; p2 = [p2, 10*log10(power2)]; pfsl = [pfsl, 10*log10(fspower)]; end figure; semilogx(axis, p100, 'g-', axis, p30, 'b-', axis, p2, 'r-', axis, pfsl,'y-'); xlabel('distance in m'); ylabel('pathloss'); text(1000, -66, 'blue : ht=30m', 'FontSize', 12); text(1000, -74, 'red : ht=2m', 'FontSize', 12); text(1000, -58, 'green : ht=100m', 'FontSize', 12); text(1000, -50, 'yellow: free space...
okumara hata model
- Get link
- X
- Other Apps
% OKUMURA HATA MODEL clc; close all; clear all; hte = 30:1:100; hre = input('Enter the receiver antenna height 3m<hre<10m: '); d = input('Enter the distance from base station 1km<d<100km: '); f = input('Enter the frequency 150MHz<f<1920MHz: '); c = 3*10^8; lambda = c / (f*10^6); lf = 10*log10((lambda^2)/((4*pi)^2)); amu = 35; garea = 9; ghte = 20*log10(hte/200); if hre > 3 ghre = 20*log10(hre/3); else ghre = 10*log10(hre/3); end l50 = lf + amu - ghte - ghre - garea; disp('Propagation path loss is:'); disp(l50); figure; plot(hte, l50, 'Linewidth', 1.5); title('Okumura model analysis'); xlabel('transmitter antenna height (m)'); ylabel('propagation path loss (dB) at set d'); grid on;
GATE SYLLABUS FOR ECE
- Get link
- X
- Other Apps
🎓 GATE 2025 Syllabus – Electronics & Communication Engineering (EC) Tip: Click 👆 on sections to expand/collapse details for focused study. (Just a visual cue; pure HTML.) 🧮 Section 1: Engineering Mathematics Linear Algebra: Vector space, basis, linear dependence/independence, matrix algebra, eigenvalues & eigenvectors, rank, linear equations. Calculus: Mean value theorems, definite/improper integrals, partial derivatives, maxima/minima, multiple/line/surface/volume integrals, Taylor series. Differential Equations: First/higher-order, Cauchy’s & Euler’s equations, variation of parameters, partial DEs, initial/boundary value problems. Vector Analysis: Plane/space vectors, gradient, divergence, curl, Gauss, Green, Stokes’ theorems. Complex Analysis: Analytic functions, Cauchy theorems/formula, convergence, Taylor/Laurent/residue theorems. Probability &...